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Abstract

We report on cooperative control of multiple neu-
ral networks for indoor blimp robot. In our laboratory,
the indoor blimp has been studied to achieve various
applications. Our objective of this paper is to propose
a robust controller that can adapt to mechanical acci-
dents such as breakdown of propellers. In our proposal
method, each propeller thrust is independently calcu-
lated by each small network. We confirm effectiveness
of the proposed method compared to the method of
calculating thrusts by a single large neural network on
the simulator.
key words - indoor blimp robot, neural network, coop-
erative control

1 Introduction

Indoor blimp robot is known as the aerial vehicle.
It can move safely in three dimensional space. The
advantage is that it consumes lower energy to move
than the other aerial vehicles such as helicopters and
air planes. Blimp robot can be applied to various
applications, for example, guidance in the buildings,
monitoring high attitudes and entertainment flight. It
has been studied on the speed control, self-charging
system and time constraint control[1, 2, 3]. The PID
control that is classified as the feedback controls is
used in these studies. In the methods, after the thrust
of entire robot is calculated, it is distributed to each
propeller. However, it is difficult for these meth-
ods to adapt to partial breakdowns or environmen-
tal changes without tuning by human. As other ap-

proaches, it has been studied that the robot movement
is emerged and self-organized from individual motor
controls through embodiment[4]. Self-organized con-
trol can be expected to have robustness against partial
breakdowns because the entire control is constructed
by interactions among them. The others could make
up for partial breakdowns. In this study, breakdowns
of propellers are our concern. It is thought that the
self-organized method can adapt to the breakdown of
the propellers. Therefore we propose a self-organized
neural controller implemented in the simulated indoor
blimp and compare the effectiveness of the proposed
method with the conventional neural network model.

This paper is organized as follows. First, a real
blimp robot that we have studied is introduced. In
the next section, our proposing method with multiple
neural networks is explained. Finally, the effectiveness
will be shown.

2 Blimp robot

2.1 Real robot

We designed a cylinder-shaped blimp robot. This
shape can greatly take the volume. This blimp robot
has three propulsion units, each of which has two pro-
pellers in the X, Y, and Z axis. Ch4 worked for vertical
movement, and ch0, ch1, ch2 and ch3 are for the X-Y
plane. Diameter(D[m]) and Height(H[m]) of the bal-
loon is decided to produce enough to buoyant force.
Total weight of blimp robot W [g] is calculated as fol-
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Figure 1: Blimp robot and overview

Figure 2: Propeller unit

lows.

W = πρheH(
D
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)2 + πcD(H +

D

2
) + U (1)

where ρhe = 178.5[g/m3] is helium density and,
c[g/m2] is the unit weight of balloon material. Bal-
loon material is aluminum film, whose unit weight c
is 30.0[g/m2]. U is the weight of the propeller unit
that consist of the six propellers, the camera sensor,
and the controller. Weight U is about 480[g]. The
buoyant force Bu can be calculated by this equation.

Bu = πρairH(
D

2
)2 (2)

where ρair=1226.0[g/m3] at 0 ℃,1atm. Bu must be
larger than W . We set diameter D to 0.94[m], and
height H to 0.8[m].

The propellers can be driven by only ON/OFF sig-
nal.

2.2 Simulator

In our study, we test two types of the neural net-
works on a simulator that is constructed based on the
architecture of the real robot. The air resistance, the
buoyancy, and the thrust of the propeller is considered
in the equation of motion[5].

We set up the simplest task where the blimp must
approach a target in a trial time in order to compare
the performances of two neural networks. For the sim-
plicity, we consider only X-Y plane.

3 Neural network

In this section, we describe two types of neural net-
works to calculate the thrust. One is the method in
which each propeller thrust is independently calcu-
lated by a small neural network(NNI). Because the
characteristic of the propeller is the same, we use the
same structure of neural network[6]. Another is the
method in which a large neural network decides all
blimp thrusts(NNA)(See Fig.3).
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Figure 3: A schematic view of NNI(top) and
NNA(bottom)

Input X and the output Z of each small network in
NNI are represented as follows.

XNNI
i (t)={ Rxi, Ryi, Dxi, Dyi, zi(t − 1) }

ZNNI
i (t)={ zi(t) }

where Rxi and Ryi is relative positions to the target
from each propeller, i. Dxi and Dyi are the move-
ments during a time step. The thrust at the previous
time step, zi(t − 1) is fed back to the input. zi(t) is
the thrust for a propeller. The inputs for each network
are calculated based on the position of propeller 2 as
follows.

Rx0 = Ry1 = Ry3 = −Rx2

Ry0 = Rx1 = −Rx3 = Ry2
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Rx2 = tx ∗ cos(−θ) − ty ∗ sin(−θ)
Ry2 = tx ∗ sin(−θ) + ty ∗ cos(−θ)

tx = Tx − X

ty = Ty − Y

where θ is an angle around Z axis of the blimp. (Tx, Ty)
and (X,Y ) are positions of the target and the blimp,
respectively.

The inputs and outputs of large network in NNA
are represented as follows.

XNNA(t)={ Rx2, Ry2, Dx2, Dy2, z0(t − 1), z1(t −
1), z2(t − 1), z3(t − 1) }

ZNNA(t)={ z0(t), z1(t), z2(t), z3(t) }
The inputs of NNA is given by a relative position of
propeller number 2. The outputs of NNA are four
propeller’s thrust.

4 Genetic algorithm

The neural network parameters are evolved by ge-
netic algorithm. One gene consists of parameters of
neural networks such as weights and biases as shown
in Fig. 4. All genes are evaluated by the distance to
the target at the end of trials.

11w w
11v v・・・ ・・・

1θ midθ
1ϕ outϕ・・・ ・・・

11w w
11v v・・・ ・・・

1θ midθ
1ϕ outϕ・・・ ・・・

11w11w w
11v11v v・・・ ・・・

1θ1θ midθ
1ϕ1ϕ outϕ・・・ ・・・

Figure 4: The structure of genes

The fitness function is given as follows.

fitness =
1
T

∑
1 − dist/distinit (3)

where T represents the number of trials, and dist and
distinit represents distances to the target at the end
and at the beginning of the trial, respectively. The
fitness is averaged over T(=5) trials starting from dif-
ferent initial positions. These are modified by using
crossover and the mutation at every generation. One
point crossover was used for the crossover and tourna-
ment selection for the selection.

5 Experiment

In this experiment, we confirm the effectiveness of
our proposing NNI model compared to NNA. The pa-
rameters used by the experiment are shown in Table
1.

Table 1: Parameter of experiment

Parameter value
Generation 100
Population 100

Tournament size 5
Mutation probability 0.6

Trial time 2000
Target position(X,Y) (0.5,1)
Initial position of X [-1.5,1.5]
Initial position of Y [0,3]

5.1 Result

After being evolved under the all propellers can
drive, the both networks have been able to move to
the target. To compare robustness of networks ac-
quired in the evolution, we measure the performances
when the propellers break down. The average of the
fitness over 100 times from a different initial position is
shown in Table 2. The table includes the fitness when

Table 2: Fitness to each state

propeller
State number NNA NNI

all propeller drive 0.988 0.999
one propeller
breaks down ch0 0.906 0.961

ch1 -8.050 0.961
ch2 0.648 0.978
ch3 -1.072 0.989

two propellers
break down ch0,ch1 0.685 0.752

ch0,ch2 -2.370 0.521
ch0,ch3 0.713 0.966
ch1,ch2 0.515 0.965
ch1,ch3 -7.409 0.547
ch2,ch3 -4.591 0.670

the all propeller works, one propeller breaks down and
two propellers break down. When the propeller breaks
down, there is a clear difference of performances be-
tween NNI and NNA. Even when the propeller breaks,
NNI can mostly approach to the target position. Es-
pecially, NNI has a strong robustness to a breakdown
of a single propeller. In NNA, the breakdown of a sin-
gle propeller can cause a serious damage to the con-
troller. Trajectories of all patterns when starting from

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 133



the same starting point(-1.0,2.2) are shown in Fig. 5,
Fig. 6, and Fig. 7. It should be noted that Fig. 5
has different scale from the others. NNI can keep a
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Figure 5: The trajectory of NNA(left) and NNI(right)
:all propeller drive
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Figure 6: The trajectories of NNA(left) and
NNI(right) :one propeller breakdown
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Figure 7: The trajectories of NNA(left) and
NNI(right) :two propellers breakdown

similar trajectory even if the propellers break down.
On the other hand, NNA cannot approach the target
when propellers break down. It can be said that NNI
is more robust than NNA in terms of performances
and trajectories from these results.

6 Conclusion

We proposed cooperative control of multiple neural
networks for indoor blimp control. In this paper, it
was shown that the proposed method was more robust
to the breakdown of propellers. In future work, task
could be more complex to confirm the effectiveness
and adaptivity of our proposed method. As another

direction, the proposed method will be tested with the
real blimp.
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